A Two-stage Catalytic Process with Cu–Pd Cluster/Active Carbon and Pd/β-Zeolite for Removal of Nitrate in Water

Yoshinori Sakamoto, Kyosuke Nakamura, Rie Kushibiki, Yuichi Kamiya, and Toshio Okuhara* Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810

(Received August 23, 2005; CL-051078)

To purify water contaminated with nitrate, a two-stage process was employed, involving nitrate hydrogenation to nitrite in the first stage (pH = 10.5) using 0.87 wt % Cu–Pd (2:1) cluster/AC, and nitrite hydrogenation in the second stage (pH = 6.5) with 1.0 wt % Pd/ β -zeolite. The nitrate (100 ppm) was hydrogenated rapidly, suppressing ammonia levels to within concentrations acceptable for drinking water.

Pollution of groundwater with nitrate (NO₃⁻) is a widespread problem, because excess intake of nitrate is harmful for humans, especially for infants (blue baby syndrome). The major source of contamination is agricultural practices (fertilizers and excretions of livestock), and groundwater remediation is an important issue. Biological treatment, ion exchange, reverse osmosis, and electrodialysis have been utilized for purification. Recently, catalytic hydrogenation of NO₃⁻ to N₂ has attracted much attention. Vorlop and co-workers found that bimetallic catalysts, such as Cu-Pd/Al₂O₃, promoted the hydrogenation of NO₃⁻ in water.¹ Although many reports exist for hydrogenation of NO₃⁻ over Cu-Pd catalysts,^{2,3} the levels of harmful components must be reduced to maximum allowable levels of 50, 0.1-3, and 0.5 ppm for nitrate, nitrite (NO₂⁻), and NH₃, respectively. Although research studies have sought a one-stage process to purify drinking water using a single catalyst, a catalyst with acceptable activity, selectivity, and stability for the practical use has not been developed.

We reported recently that Cu–Pd clusters supported on active carbon are highly selective for the hydrogenation of NO₃⁻ to NO₂⁻ at high pH.⁴ On the other hand, we found here Pdexchanged β -zeolite selectively catalyzed the hydrogenation of NO₂⁻ to N₂ and N₂O. These findings prompted us to investigate a two-stage process⁵ that optimizes catalysis at each stage; NO₃⁻ hydrogenation to NO₂⁻ in the first stage and NO₂⁻ hydrogenation in the second stage (Eq 1). Here, we report a two-stage process consisting of Cu–Pd cluster/AC and Pd/ β -zeolite that is promising for the purification of water contaminated by nitrate.

$$NO_{3}^{-} \xrightarrow{\mathbf{1}^{st}}_{+H_{2}} NO_{2}^{-} \xrightarrow{\mathbf{2}^{nd}}_{+H_{2}} N_{2} + N_{2}O \xrightarrow{}_{+H_{2}} N_{2}.$$
(1)

A Cu–Pd cluster (Cu₂–Pd) stabilized with sodium citrate was synthesized according to a previously described method.⁶ Support of the clusters on AC (Wako Pure Chemical Industries, Ltd., 1155 m² g⁻¹) was achieved using an incipient wetness method involving an aqueous suspension of colloidal Cu–Pd clusters.⁴ A 1.0 wt % Pd/ β -zeolite was prepared by ion exchange using PdCl₂ and NH₄^{+- β}-zeolite (Zeolyst, Si/Al = 12.5, 800 m² g⁻¹).⁷ As references, 1.0 wt % Pd/SiO₂ (from Aerosil 50 silica, 63 m² g⁻¹), 1.0 wt % Pd/ZrO₂ (from ZrO₂, 103 m² g⁻¹), and 1.0 wt % Pd/AC were used.³

The hydrogenation of NO₃⁻ or NO₂⁻ was performed using an aqueous solution of NaNO₃ [100 ppm (1.6 mmol dm⁻³), pH = 5.5] or an aqueous solution of NaNO₂ [74 ppm (1.6 mmol dm⁻³), pH = 5.8] and hydrogen (98 cm³ h⁻¹) or a mixture of H₂ and CO₂ (1:1, 90 cm³ h⁻¹) in a gas–liquid flow reactor (Pyrex tube, 10-mm i.d.).³ The gas at the outlet of the reactor was analyzed by a gas chromatographic (GC) instrument (Shimadzu GC-8A) equipped with either a molecular sieve 5A column (for N₂ and O₂) or a Porapak Q column (for N₂O). Concentrations of NO₃⁻, NO₂⁻, and NH₃ in the aqueous phase were determined using a flow injection analysis (FIA) system consisting of a Soma Optics S-3250 detector and a Sanuki Industry FI-710 analyzer.³

Table 1 shows the activity and selectivity for hydrogenation of NO₃⁻ or NO₂⁻ at 298 K. When the mixture of H₂ and CO₂ was fed, pH of the liquid at the outlet was 6.5. The 0.87 wt % [Cu₂-Pd]/AC was not selective for the hydrogenation of NO₃⁻. In contrast, when only H₂ was fed, the pH was 10.5 and NO₂⁻ was formed selectively (Table 1). These monometallic Pd catalysts in Table 1 were inactive for the hydrogenation of NO₃⁻ (data not shown). In the hydrogenation of NO₂⁻ at pH = 6.5, [Cu₂-Pd]/AC and Pd/ β -zeolite were more selective for N₂ + N₂O (Table 1) than Pd/SiO₂, which was reported to be selective.¹ In contrast, Pd/ZrO₂ and Pd/AC produced large amounts of NH₃ from NO₂⁻. The hydrogenation of NO₂⁻ at

Reactant	Catalyst	pH ^b	Reaction rate	Conversion	Selectivity ^c /%			
			$/\text{mmol}\text{h}^{-1}\text{g-cat}^{-1}$	/%	N ₂	N_2O	NO_2^-	NH ₃
NO ₃ -	0.87 wt % [Cu2-Pd]/AC	10.5	1.0	98.4	3.3	0	88.1	8.6
	$0.87wt\%[Cu_2Pd]/AC$	6.5	0.4	99.7	0	78.8	0.1	21.1
NO ₂ -	0.87 wt % [Cu2-Pd]/AC	6.5	1.2	100	20.0	78.8	_	1.2
	1.0 wt % Pd/ β -zeolite	6.5	0.6	100	16.5	81.3	_	2.2
	1.0 wt % Pd/SiO ₂	6.5	0.5	95.3	21.3	70.6	_	8.1
	1.0 wt % Pd/ZrO ₂	6.5	0.3	97.1	0	56.0	_	44.0
	1.0 wt % Pd/AC	6.5	4.6	96.5	0	53.9		46.1

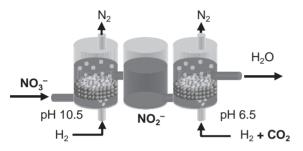
Table 1. Hydrogenation of nitrate or nitrite with H₂ over various catalysts^a

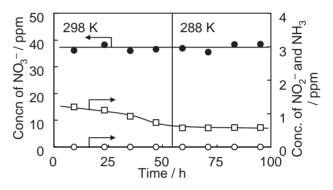
^aReaction conditions: NO_3^- 100 ppm (NaNO₃ 1.61 mmol dm⁻³) or NO_2^- 74 ppm (NaNO₂ 1.61 mmol dm⁻³); H₂ or CO₂, 3.5 mmol h⁻¹; Catalyst, 0.02– 1.0 g; Reaction temperature, 298 K. ^bpH at outlet of the reactor. To adjust pH to 6.5, CO₂ (3.5 mmol h⁻¹) was added to the H₂ flow. ^cOn the basis of N atom.

Table 2. Two-stage hydrogenation of nitrate with H_2^a

Stage	Catalyst	pH^b	WHSV /h ⁻¹	Conversion /%	Selectivity ^c /%					
					N ₂	N_2O	NO_2^-	NH ₃	(NH ₃ ppm)	
First	0.87 wt % [Cu2-Pd]/AC	10.5	426	95.1	0	0	93.6	6.4	(1.7)	
Second	0.87 wt % [Cu2-Pd]/AC	6.5	164	100	24.7	65.9	0	9.4	(2.6)	
Second	$1.0 \text{ wt } \% \text{ Pd}/\beta$ -zeolite	6.5	234	95.1	36.0	55.4	0	8.6	(2.2)	
First	0.87 wt % [Cu2-Pd]/AC	10.5	755	64.4	0	0	96.7	3.3	(0.6)	
Second	0.87 wt % [Cu2-Pd]/AC	6.5	158	99.8	20.0	65.5	0	14.5	(4.1)	
Second	1.0 wt % Pd/ β -zeolite	6.5	50	63.5	70.7	25.1	0	4.2	(0.7)	
Second ^d	1.0 wt % Pd/ β -zeolite	6.5	50	64.5	54.9	41.9	0	3.2	(0.6)	
Second ^{d,e}	1.0 wt % Pd/ β -zeolite	6.5	50	64.5	96.8	0	0	3.2	(0.6)	

^aReaction conditions: NO_3^- 100 ppm (NaNO₃ 1.61 mmol dm⁻³); H₂ or CO₂, 3.5 mmol h⁻¹; Catalyst, 0.13 g (First), 0.25 g (Second); Reaction temperature, 298 K. ^bpH at outlet of the reactor. To adjust pH to 6.5, CO₂ (3.5 mmol h⁻¹) was added to the H₂ flow. ^cOn the basis of N atom. ^dReaction temperature, 288 K. ^eWith 5.0 wt % Pd/AC in the gas phase.




Figure 1. Two-stage process.

pH = 10.5 over $[Cu_2-Pd]/AC$ was very slow (about 1/20 that at pH = 6.5) and was less selective (data not shown).

These results allowed us to design a two-stage catalytic process using $[Cu_2-Pd]/AC$ with NO₃⁻ hydrogenation to NO₂⁻ at pH = 10.5 in the first stage, and NO₂⁻ hydrogenation in the second stage at pH = 6.5 using $[Cu_2-Pd]/AC$ or Pd/ β -zeolite. as illustrated in Figure 1.

As shown in Table 2, the stationary selectivity toward NO₂⁻ in the first stage reached 93.6 and 96.7%, suppressing NH₃ (6.4 and 3.3%) at conversions of 95.1 and 64.4%, respectively. Conversion of NO₃⁻ and selectivity were nearly constant for at least 120 h. At high conversion (95.1%) of NO_3^- , the concentration of NH₃ at the outlet of the second reactor was less than 2.6 ppm over both $[Cu_2-Pd]/AC$ and Pd/β -zeolite; NO₂⁻ was not detected. However, at a moderate conversion (64.4%), significant levels of NH₃ were formed when [Cu₂-Pd]/AC was used in the second reactor. The increase in NH₃ is probably caused by inhibition resulting from strong adsorption of NO3⁻ on [Cu2-Pd]/ AC, i.e., the surface coverage of NO₂⁻ decreased in the presence of NO₃⁻, which is favorable for yield of the monomolecular product, NH₃. However, it is remarkable that the concentration of NH₃ at the final outlet was maintained at 0.7 ppm over Pd/ β -zeolite, independent of NO₃⁻ conversion in the first stage, unlike over [Cu₂-Pd]/AC, in which NO₂⁻ was hydrogenated selectively to N₂ and N₂O over Pd/ β -zeolite even in the presence of NO₃⁻. On this catalyst, NO₃⁻ was not hydrogenated and the reaction rate of NO2⁻ was not influenced by the presence of NO₃⁻, indicating that NO₃⁻ was not adsorbed.

Figure 2 shows the time course at the second stage over Pd/ β -zeolite at SV (weight hourly space velocity (liq.)) = 50 h⁻¹. The concentration of NO₃⁻ was constant for 50 h at 288–298 K and was less than the maximum allowable value (50 ppm) for drinking water. Note that NO₂⁻ was not detected. The con-

Figure 2. Time course of two-stage hydrogenation of nitrate with 0.87 wt % [Cu₂-Pd]/AC and 1.0 wt % Pd/ β -zeolite. Concentrations of (\bullet) NO₃⁻, (\bigcirc) NO₂⁻, and (\square) NH₃.

centration of NH₃ decreased gradually with time and reached 0.7 ppm. When temperature was decreased to 288 K (corresponding to that of groundwater) the concentration of NH₃ was 0.6 ppm, an amount similar to the maximum allowable value (0.5 ppm) for drinking water. N₂O at the gas phase was completely converted to N₂ over 5 wt % Pd/AC (N.E. CHEMCAT. Co.) at the outlet of the second stage (last column in Table 2).⁷

This work was partly supported by a project of Core Research for Evolutional Science and Technology (CREST) at Japan Science and Technology Agency (JST). This work was also supported by a Grant-in-Aid for Scientific Research (Grant No. 17560678) from Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- 1 S. Hörold, K.-D. Vorlop, T. Tacke, and M. Sell, *Catal. Today*, **17**, 21 (1993).
- A. Pintar, J. Batista, and J. Levec, *Catal. Today*, **66**, 503 (2001);
 R. Gavagnin, L. Biasetto, F. Pinna, and G. Strukul, *Appl. Catal.*, *B*, **38**, 91 (2002).
- 3 Y. Yoshinaga, T. Akita, I. Mikami, and T. Okuhara, J. Catal., 207, 37 (2002).
- 4 Y. Sakamoto, K. Nakata, Y. Kamiya, and T. Okuhara, *Chem. Lett.*, **33**, 908 (2004).
- 5 L. Lemaignen, C. Tong, V. Begon, R. Burch, and D. Chadwick, *Catal. Today*, **75**, 43 (2002).
- 6 Y. Ishihara and T. Hirai (Catalysis & Chemical Ind. Co., Ltd.), Jpn. Kokai Tokkyo Koho 2004-57954 (2004).
- 7 K. Nakamura, Y. Yoshida, I. Mikami, and T. Okuhara, *Chem. Lett.*, 34, 678 (2005).